Gated Self-Matching Networks for Reading Comprehension and Question Answering
نویسندگان
چکیده
In this paper, we present the gated selfmatching networks for reading comprehension style question answering, which aims to answer questions from a given passage. We first match the question and passage with gated attention-based recurrent networks to obtain the question-aware passage representation. Then we propose a self-matching attention mechanism to refine the representation by matching the passage against itself, which effectively encodes information from the whole passage. We finally employ the pointer networks to locate the positions of answers from the passages. We conduct extensive experiments on the SQuAD dataset. The single model achieves 71.3% on the evaluation metrics of exact match on the hidden test set, while the ensemble model further boosts the results to 75.9%. At the time of submission of the paper, our model holds the first place on the SQuAD leaderboard for both single and ensemble model.
منابع مشابه
The Effect of Iranian EFL Learners’ Self-generated vs. Group-generated Text-based Questions on their Reading Comprehension
Reading comprehension is one of the most important skills, especially in the EFL context. One way to improve reading comprehension is through strategy use. The present study aimed at investigating the effect of question-generation strategy on learners' reading comprehension. The participants in the study were 63 intermediate students from three intact groups in Resa institute in Boukan, They we...
متن کاملUsing Generalized Language Model for Question Matching
Question and answering service is one of the popular services in the World Wide Web. The main goal of these services is to finding the best answer for user's input question as quick as possible. In order to achieve this aim, most of these use new techniques foe question matching. . We have a lot of question and answering services in Persian web, so it seems that developing a question matching m...
متن کاملDeep Coattention Networks for Reading Comprehension
Machine reading comprehension of text is an important task in Natural Language Processing. A recently released dataset, the Stanford Question Answering Dataset (SQuAD) formulates the problem as question answering, and it provides a large corpus of challenging, realistic questions. To address this task, we implement an end-to-end neural encoder/decoder model. The encoder consists of the coattent...
متن کاملThe NarrativeQA Reading Comprehension Challenge
Reading comprehension (RC)—in contrast to information retrieval—requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selectin...
متن کاملMedical Exam Question Answering with Large-scale Reading Comprehension
Reading and understanding text is one important component in computer aided diagnosis in clinical medicine, also being a major research problem in the field of NLP. In this work, we introduce a question-answering task called MedQA to study answering questions in clinical medicine using knowledge in a large-scale document collection. The aim of MedQA is to answer real-world questions with large-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017